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Abstract—Software defect datasets are crucial to facilitating
the evaluation and comparison of techniques in fields such as
fault localization, test generation, and automated program repair.
However, the reproducibility of software defect artifacts is not
immune to breakage. In this paper, we conduct a study on
the reproducibility of software defect artifacts. First, we study
five state-of-the-art Java defect datasets. Despite the multiple
strategies applied by dataset maintainers to ensure reproducibil-
ity, all datasets are prone to breakages. Second, we conduct a
case study in which we systematically test the reproducibility of
1,795 software artifacts during a 13-month period. We find that
62.6% of the artifacts break at least once, and 15.3% artifacts
break multiple times. We manually investigate the root causes
of breakages and handcraft 10 patches, which are automatically
applied to 1,055 distinct artifacts in 2,948 fixes. Based on the
nature of the root causes, we propose automated dependency
caching and artifact isolation to prevent further breakage. In
particular, we show that isolating artifacts to eliminate external
dependencies increases reproducibility to 95% or higher, which
is on par with the level of reproducibility exhibited by the most
reliable manually curated dataset.

Index Terms—software reproducibility, software defects, soft-
ware maintenance, software quality

I. INTRODUCTION

Reproducibility in software engineering means that a result
from an experiment can be repeatedly observed by others
following the same procedure and using the same software
artifact [8]. Reproducibility is imperative for research [10].
The ability for software artifacts to build and execute as they
did originally with the same end result is crucial. The inability
to repeat or extend the results of an experiment with a software
artifact would defeat its purpose. In particular, software defect
datasets [13, 21, 29, 30, 33, 37, 48, 58] have a large impact on
the software engineering research community. These datasets
enable the study and design of new techniques for fields such
as automated program repair [20, 61, 64, 65], test prioritization
[34, 35, 39, 41, 44, 51], test generation [17–19, 28, 50, 63],
and fault localization [22, 46, 52, 66]. These fields have helped
make software more robust, efficient, and secure.

Software defect datasets contain hundreds of defects col-
lected from real-world projects. These datasets are comprised
with a buggy version of the source code and the corresponding
fixed version. Additionally, the process of building and testing
is automated, and does not require domain-specific knowledge.
An important aspect of any such dataset is to provide a reliable
way to successfully build its artifacts so that researchers can

replicate experiments or conduct new studies. Without this,
their adoption and usefulness would be limited.

A troubling fact is that software defect artifacts are not
immune to breakages after their creation [55]. Breakage in
this context means that the original defects and fixes are
no longer reproducible. Software breakage in these artifacts
is no different, and perhaps more prone. Such artifacts are
historical versions of the software, which are more likely to
suffer from missing dependencies or external resources that
affect their build outcome. Additionally, software defect arti-
facts can become broken due to previously passing tests that
start failing due to deprecated APIs, or unavailable resources
required during the testing process. The inability to evaluate or
study these artifacts hinders research progress by prohibiting
comparisons in future evaluations. Surprisingly, to the best of
our knowledge, there is no literature on the reproducibility of
software defect artifacts and their proneness to breakages.

In this paper, we present a study on the reproducibility
of software defect datasets. First, we conduct a study on
reproducibility of five state-of-the-art Java software defect
datasets: DEFECTS4J [30], GROWINGBUGS [29], BUGS.JAR
[48], BUGSWARM [58], and BEARS [37]. We aim to answer
two research questions: (1) What criteria and strategies do
datasets apply to determine reproducibility and to reduce the
risk of software breakage, and (2) How are datasets affected by
breakages. We find that reproducibility has different meanings
across datasets. For example, while some datasets consider
the existence of any test failure sufficient to consider a bug
reproducible, others require matching the number and names
of failing tests. As for reproducibility strategies, different
approaches are applied to ensure reproducibility, from re-
producing multiple times upon artifact creation to managing
project dependencies and using containerization. Furthermore,
we find that software breakages affect all datasets, especially
those that adopt automated approaches for their creation whose
reproducibility ranges from only 26.6% to 69%.

Second, we conduct a case study on the reproducibility
of the BUGSWARM dataset. BUGSWARM is designed to con-
tinuously grow, and adopts containerization to ensure repro-
ducibility, i.e., each artifact is packed as a Docker image. This
facilitates the study and the fix of breakages. The goal is to de-
termine (1) How software defect artifacts experience breakages
through time, (2) What are the root causes and corresponding
patches for breakages, and (3) How to prevent future breakages
to ensure long-term reproducibility. We systematically monitor



TABLE I
DATASETS FOR REPRODUCIBILITY STUDY. Release INDICATES THE EXACT VERSION PICKED FOR THE STUDY.

Dataset # Projects # Artifacts Artifact Source Build System Bug Location Provided Reference Release

DEFECTS4J 17 864 Issue Tracker Ant / Maven Source List of Failing Tests 397075d
GROWINGBUGS 150 570 Issue Tracker Ant Source List of Failing Tests 6071840
BUGS.JAR 8 1,158 Issue Tracker Maven Source Build Log for Buggy 8410717
BUGSWARM 120 1,795 Travis-CI Ant / Gradle / Maven Source / Config CI Log for Buggy & Fixed 181f304
BEARS 72 251 Travis-CI Maven Source List of Failing Tests 912bb98

the reproducibility of 1,795 Java artifacts over a 13-month
period. We find that 1,124 (62.6%) artifacts break at least
once, and 275 (15.3%) break multiple times. With a test
interval of 11.7 days, on average 32 artifacts are newly broken
during each test. To identify root causes of breakages, we man-
ually inspect 1,606 breakages. We identify 11 root causes and
handcraft patches for 10 of them. Those patches are applied to
1,055 (93.9%) distinct broken artifacts in an automated manner
in 2,948 fixes. Among all the fixes, 44% of them are related
to broken project dependencies retrieved by the build system.
To prevent breakages in the future, we propose dependency
caching, which caches project dependencies in the Docker
container of each artifact. Dependency caching is successful
on 1,700 (94.7%) artifacts with an average size increase of
only 5.1%. Finally, we isolated 1,257 out of 1,700 artifacts,
which are reproducible even without internet. An evaluation of
the reproducibility of isolated artifacts over an 8-month period
revealed that reproducibility reaches 95% or higher.

There has been previous research in fixing broken builds
[24, 36, 40, 42, 56, 60]. These approaches can be applied
automatically to fix broken artifacts due to dependency-related
issues. They range from including additional repositories from
which dependencies are retrieved, to specifically changing
dependency versions. However, these repair strategies do not
consider environmental factors (e.g., changing the JDK or
TLS versions), which we find to be critical in the long-term
reproducibility of software artifacts. Furthermore, the above
neither study the nature of software breakage through time nor
apply prevention strategies to ensure long-term reproducibility.

Our study on reproducibility has revealed open opportunities
for the research community that are applicable to defect
datasets, and software in general. Software fragility is a real
problem. This is compounded by the unavailability of soft-
ware dependencies and bad practices in writing non-isolated
tests. We highlight this by quantifying their effects on the
reproducibility of BUGSWARM. We have developed multiple
approaches for repairing and preventing breakage that we hope
can be learned from and adopted by other datasets, as well as
software engineering in general.

The contributions of this paper are as follows:
• We present a study on the reproducibility of five state-

of-the-art Java software defect datasets, and show how
applied reproducibility strategies fail to prevent software
breakages (Section II).

• We examine the reproducibility of BUGSWARM in a 13-
month period to investigate the frequency, root causes,

and fixes of software breakages (Section III).
• We develop dependency caching and artifact isolation

to reduce the risk of breakage and to ensure long-term
reproducibility. We successfully isolate 1,257 artifacts,
which have a reproducibility of handcrafted quality while
being mined automatically (Section III).

II. REPRODUCIBILITY OF JAVA DEFECT DATASETS

Software defect datasets lay an essential foundation for soft-
ware engineering (SE) research. In the past decade, along with
the focus of fault localization, test generation and automated
program repair on Java projects, several Java defect datasets
[27, 29, 30, 32, 37, 48, 53, 58] have been created by the
SE community, acting as benchmarks to evaluate proposed
techniques on real-world software while helping advance the
state of the art. In particular, areas such as fault localization
and automated program repair require reproducible software
defects. Reproducibility in this context means that the code can
be built, tests can be run, and expected failures are observed.
Sudden breakage of defect artifacts, i.e., broken builds, the
absence of expected failures or the occurrence of unexpected
failures, can be quite problematic for the SE community as it
would lead to wrong findings, nonreplicable past studies, or
even to the inability to perform future studies.

This section investigates the reproducibility of five state-of-
the-art Java software defects datasets: DEFECTS4J, GROW-
INGBUGS, BUGS.JAR, BUGSWARM and BEARS. Each ar-
tifact consists of a buggy version of the source code and
the corresponding fixed version. All datasets, except for
BUGS.JAR, provide scripts to build and run existing tests.
Note that we only focus on datasets whose artifacts consist
of whole projects. Datasets that only provide code snippets
or single source files without build configurations, such as
QUIXBUGS [32], are not included in this study. Also, we
do not include datasets of non-functional bugs [23, 47] and
web application bugs [54]. Lastly, recent datasets [27, 53] not
available at the time of this study are not included. The rest of
this section aims to answer the following research questions:

RQ1 What criteria and strategies do datasets use to define
and ensure reproducibility?

RQ2 How are datasets affected by software breakages?

A. RQ1: Reproducibility Criteria & Strategies

Table I captures the details of the selected datasets including
the number of defect artifacts included in each dataset as
of writing of this paper, the number of different projects



TABLE II
CRITERIA OF REPRODUCIBILITY FOR DATASETS

Dataset Definition of Reproducibility

Existence Number Name Status

DEFECTS4J 3 3 3
GROWINGBUGS 3 3 3
BUGS.JAR 3
BUGSWARM 3 3 3 3
BEARS 3

these artifacts belong to, the source of the defects (issue
tracker or continuous integration) and their location (source
files and/or configuration files), and the kind of reference
provided by the datasets (list of failing tests, build logs at
time of creation, or CI historical build logs). The rest of this
section focuses on investigating the reproducibility criteria and
strategies employed by Java datasets to ensure reproducibility,
both at creation time and long term. For this, we have
examined three sources of information when available: dataset
documentation, publications, and dataset infrastructure code.
Below we describe our findings for each dataset.

1) DEFECTS4J: DEFECTS4J [6, 30] is one of the most
widely-used software defect datasets, which consists of 864
artifacts manually mined over a span of 8 years. A list of
reference failing tests is provided by DEFECTS4J for each
artifact. These are the failing tests captured upon the creation
of the artifact, which failed on the buggy version but passed
on the fixed version. DEFECTS4J considers an artifact to be
reproducible if all of its reference failing tests are observed
when reproducing (running again) the buggy version, and
no failing tests are observed when reproducing the fixed
version. To ensure long-term reproducibility, DEFECTS4J lists
the system requirements common to all artifacts, including
required versions of Java, Git, SVN and Perl. Furthermore,
specific dependency packages of projects are downloaded from
the official web server of DEFECTS4J in the initialization
stage. To check the reproducibility of DEFECTS4J, users can
run a verification script provided by the maintainers.

2) GROWINGBUGS: GROWINGBUGS [2, 3, 29] extends
DEFECTS4J’s framework to automatically mine 570 artifacts
via BUGBUILDER. Like DEFECTS4J, GROWINGBUGS pro-
vides a list of failing tests for each artifact as reference.
GROWINGBUGS adopts DEFECTS4J’s reproducibility criteria
and relies on some of its reproducibility strategies. While
the initialization step from DEFECTS4J is automatically run
to download dependency packages from DEFECTS4J’s web
server, GROWINGBUGS does not update this server with new
dependency packages used by newly added artifacts, which can
result in missing packages that may need to be downloaded
from third-party locations. Finally, its compatibility with DE-
FECTS4J allows the reuse of DEFECTS4J’s verification script
to examine dataset reproducibility.

3) BUGS.JAR: BUGS.JAR [4, 48] provides 1,158 artifacts
automatically mined from bug reports of 8 large open-source
projects. For each of its artifacts, BUGS.JAR provides a ref-

erence log for the buggy version, which was generated at the
time the dataset was created. Also at creation time, BUGS.JAR
removes tests that fail when running the fixed version based
on the assumption that such tests may be unrelated to the fix.
Thus, BUGS.JAR considers an artifact reproducible if there
are no observed failing tests when running the curated fixed
version, and if any failing test is observed when running the
buggy version. To ensure reproducibility at creation time, each
artifact is run 10 times to detect non-reproducible and flaky
artifacts, which are excluded from the dataset. No additional
actions are taken for long-term reproducibility. To the best
of our knowledge, BUGS.JAR does not provide scripts to run
artifacts and verify their reproducibility.

4) BUGSWARM: BUGSWARM [5, 58] is a software de-
fect dataset that leverages Continuous Integration (CI) to
automatically mine 1,941 artifacts from projects hosted in
GitHub. Unlike BUGS.JAR, BUGSWARM provides reference
logs for buggy and fixed versions. The reference logs are
historical build logs generated by Travis-CI when the code
was originally committed to GitHub and tested in the cloud. In
determining reproducibility, BUGSWARM checks whether the
number of passing & failing tests and the names of observed
failing tests match those listed in the reference logs as well as
the status of the CI build (passing, failing or error).
No test failures are expected for the fixed version to be consid-
ered reproducible. To ensure reproducibility during creation,
BUGSWARM tested the reproducibility of each artifact 5 times.
The dataset includes artifacts that are reproducible more than
once but less than five times, which are labeled as “flaky.”
We exclude all 146 flaky artifacts and consider the remaining
1,795 artifacts in this study. BUGSWARM containerizes each
artifact as a Docker image in an attempt to ensure long-term
reproducibility. The Docker image aims to replicate the exact
environment used by Travis-CI to run the code and includes
tailored scripts to run buggy and fixed versions.

5) BEARS: Like BUGSWARM, BEARS [1, 37] automati-
cally mines 251 artifacts from 72 GitHub projects that use
Travis-CI. However, instead of reference logs, BEARS pro-
vides for each artifact a JSON file with information collected
at creation time, such as reference failing tests. Similar to
BUGS.JAR, BEARS considers an artifact reproducible if there
are no failing tests in the fixed version, and there is at least
one failing test in the buggy version. During creation, each
artifact is run twice; artifacts with flaky tests are excluded from
the dataset. BEARS relies on Maven for the build process. No
other actions are taken for long-term reproducibility. A script is
available to run all artifacts, but reproducibility is not verified.

RQ1: Reproducibility criteria vary across datasets rang-
ing from the existence of any failure to matching the
number and/or names of failing tests, and CI status. Var-
ious reproducibility strategies are applied at creation time,
the most popular of which runs artifacts multiple times to
identify flakiness. Strategies for long-term reproducibility
include managing dependencies and using containers.



TABLE III
REPRODUCIBILITY OF SOFTWARE DEFECT DATASETS. RESULTS FOR DEFAULT CRITERIA ARE SHOWN IN BOLD.

Dataset # Artifacts Reproducibility for Different Criteria

Existence Number Match Name Match Status Match

DEFECTS4J 864 837 (96.9%) 837 (96.9%) 837 (96.9%) N/A
GROWINGBUGS 570 175 (30.7%) 170 (29.8%) 170 (29.8%) N/A

BUGS.JAR 1,158 308 (26.6%) 303 (26.2%) 303 (26.2%) N/A
BUGSWARM 1,795 1,392 (77.5%) 1,388 (77.3%) 1,387 (77.3%) 1,239 (69%)

BEARS 251 137 (54.6%) 134 (53.4%) 134 (53.4%) N/A

B. RQ2: Software Breakages in Java Defect Datasets

In this section, we discuss how state-of-the-art datasets are
affected by software breakages given the various reproducibil-
ity criteria and strategies discussed in the previous section.

1) Criteria for Reproducibility: As discussed earlier, vari-
ous reproducibility criteria are used across datasets. Here we
categorize these criteria as Existence, Number Match, Name
Match and Status Match. Existence means that the artifact is
reproducible if there is at least one failing test when running
the buggy version. Number Match means that the artifact
is reproducible if the number of observed failing tests (and
passing tests, if required by the dataset) matches the number
of tests reported by a given dataset in their reference data.
Name Match requires the names of failing tests to match. In
addition of fulfilling Number Match and Name Match, Status
Match also requires CI build status to match. Note that all
of these criteria are based on the assumption that the fixed
version should never have failing tests.

Table II shows the default reproducibility categories per
dataset. BUGS.JAR and BEARS only check Existence of failing
tests. DEFECTS4J and GROWINGBUGS use Name Match,
and therefore also require Number Match and Existence.
BUGSWARM adopts the most strict criterion Status Match that
requires everything including CI build status to match.

2) Experimental Setup: When running each artifact, we
first check out the buggy version, build the project, run tests
and gather results as reproduced logs. Then we checkout the
fixed version and repeat the process of building, testing and
collecting reproduced logs. Because BUGS.JAR only provides
a developer-patch.diff instead of a fixed version, we
apply the patch to the buggy version via git apply to
generate the fixed version.

We comply with the environmental requirements of each
dataset when specified. DEFECTS4J and GROWINGBUGS ex-
plicitly require the use of Java 8, and BUGSWARM includes the
necessary Java versions in the Docker images of its artifacts.
On the other hand, BUGS.JAR and BEARS do not specify a
required Java version for their artifacts. We use Java 8 because
(1) Java 8 is the earliest version that is still in life cycle at the
time of conducting this study (Java 7 and earlier versions are
deprecated and thus inaccessible), and (2) this study aims to
report reproducibility from a user’s standpoint, and therefore
it is not intended to debug individual artifacts. Note that there
are artifacts from BUGS.JAR and BEARS that were originally

built with Java 7 or older versions. We discuss the implications
of unspecified Java versions in Section IV.

We use the scripts provided by DEFECTS4J, GROWING-
BUGS, BUGSWARM and BEARS to run their artifacts. For
BUGS.JAR, which does not provide scripts, we leverage the
reference logs to infer the commands to build and run tests.
Then we verify the correctness of the commands by comparing
the test classes executed with those listed in BUGS.JAR’s
reference logs. For all datasets, we parse the reference logs and
the reproduced logs to extract test information, and in the case
of BUGSWARM, Travis-CI build outcome. Then we calculate
reproducibility, i.e., the percentage of artifacts in each dataset
match their reference logs, and thus are still reproducible.

All datasets except for BUGSWARM explicitly exclude
flaky artifacts. For BUGSWARM, we do not consider artifacts
marked as “flaky.” Nevertheless, we run the artifacts of each
dataset three times to rule out unknown flakiness. Note that we
do not observe major differences across runs, and this section
presents the results for the first run dated in July 2022.

3) Results: Table III shows the reproducibility of each
software defect dataset. Interestingly, the reproducibility under
the category of Existence seems quite accurate to be repre-
sentative. Matching number and/or name of tests just slightly
decreases the reproducibility of all datasets. In fact, only 18
artifacts are reproducible under Existence but broken under
Number Match or Name Match. We manually inspected all of
them and found that 10 artifacts have missing expected failing
tests when reproducing and 8 artifacts have unexpected failing
tests. These artifacts still have observed failing tests but the
number or name does not match the reference provided by
datasets. On the other hand the category Status Match, only
used by BUGSWARM, has a more significant impact on the
overall reproducibility. While results for each criterion can be
found in Table III, the rest of this discussion focuses on the
default criterion used by each dataset.

DEFECTS4J achieves the highest reproducibility of 96.9%.
Among 864 artifacts, only 27 are broken. Note that main-
tainers of DEFECTS4J have deprecated 29 artifacts due to
behavioral changes introduced under Java 8. But we still
examine reproducibility of all artifacts and only 27 of the
29 deprecated artifacts are broken in our run. Recall that
DEFECTS4J is a handcrafted dataset that has taken more
than 8 years to grow to 864 artifacts. The tedious and time-
consuming human labor, among other things, has paid off in
achieving a remarkable level of reproducibility.
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Fig. 1. Count of Artifacts with a Number of Breakages

As an extension of DEFECTS4J, GROWINGBUGS automat-
ically mined 570 new artifacts without human intervention.
However, the reproducibility of these auto-mined artifacts is
considerably lower than that of the handcrafted DEFECTS4J
artifacts, despite being newer. We find that 400 out of 570
artifacts are currently broken 15 months after their creation
when using their default criterion Name Match, resulting in a
reproducibility rate of only 29.8%. Using the least restrictive
criterion Existence increases reproducibility slightly to 30.7%.

For BUGS.JAR, only 308 out of 1,158 artifacts are found to
be reproducible, i.e., 26.6%. Despite running each artifact 10
times to ensure reproducibility at creation time, reproducibility
of 850 artifacts faded away since the dataset creation in
October 2017. Interestingly, despite that BUGS.JAR uses the
most loose criterion Existence by default, 303 out of 308 re-
producible artifacts remain reproducible when applying stricter
reproducibility criteria. If we apply Number Match and Name
Match, the reproducibility will be both 26.2%.

We find that 1,239 out of 1,795 artifacts are reproducible
in BUGSWARM. The containerization strategy seems to con-
tribute to a slightly higher reproducibility of 69% after 32
months since its creation, which is the highest among those
datasets created automatically. Recall that BUGSWARM’s de-
fault reproducibility criterion is the most restrictive: Status
Match. Less restrictive criteria Number/Name Match and
Existence lead to a higher reproducibility of 77.3% and
77.5%, respectively. The difference in reproducibility is due
to mismatches of the overall status of the Travis-CI build.
There are no failing tests in the fixed version, and the number
and names of failing tests in the buggy version match the
reference logs. However, when reproducing the fixed version,
the Travis-CI build status is failing because some other CI
steps fail after tests run. In this case, the artifact is deemed
broken by the default reproducibility criterion of BUGSWARM,
but reproducible for all other criteria.

Finally, the reproducibility of BEARS is 54.6% with 137
out of 251 artifacts being reproducible. After 46 months from
creation, 117 artifacts have broken. Similar to BUGS.JAR,
despite using the least restrictive Existence criterion by de-
fault, reproducibility remains almost the same when applying
Number/Name Match, achieving a reproducibility of 53.4%.

Interestingly, while there is an overlap of projects from
which some datasets mine artifacts, reproducibility at the

project level varies significantly across datasets. For in-
stance, both DEFECTS4J and GROWINGBUGS mine arti-
facts from JacksonDatabind, and both BUGSWARM and
BEARS mine artifacts from raphw/byte-buddy. How-
ever, in DEFECTS4J, all 112 artifacts (100%) mined from
JacksonDatabind are reproducible while in GROWING-
BUGS, only 12 out of 39 artifacts (30.8%) are repro-
ducible. Similarly, 351 out of 361 artifacts (97.2%) mined
from raphw/byte-buddy in BUGSWARM are reproducible
while none of the 5 artifacts in BEARS are reproducible.

Note that some BUGSWARM artifacts correspond to differ-
ent build jobs of a same project version, where build jobs differ
in the environment used to build (and test) a given project ver-
sion. We grouped the 1,795 BUGSWARM artifacts by project
version, which resulted in 1,152 groups from which 430
groups have more than one artifact. We found that in 67 out of
430 groups some build jobs are reproducible while others are
broken. For example, raphw-byte-buddy-202917181
and raphw-byte-buddy-202917180 are build jobs of
the same project version, but differ in reproducibility. Among
the remaining 363 groups, in 262 all build jobs are repro-
ducible while in 101 all build jobs are broken.

Our manual inspection of breakages revealed that artifacts
from different datasets are broken due to similar reasons.
Reasons for breakages include compile errors, unexpected
test failures observed in the fixed version, and expected test
failures in the buggy version not being observed. There are
also common root causes leading to breakage. For example,
the deprecation of Java 7 caused artifact breakages for all
datasets except for BUGSWARM, which leverages container-
ization to use the reference environment to run artifacts.
Other root causes include missing compatible dependencies
and deprecated insecure links. Section III will provide an in-
depth investigation in the context of BUGSWARM.

RQ2: All datasets experience breakages, especially those
created automatically. DEFECTS4J, the only handcrafted
dataset, reaches the highest reproducibility of 96.9%,
while BUGS.JAR has the lowest 26.6%. Despite adopting
different criteria, reproducibility for a given dataset only
varies slightly. On the other hand, artifacts from a same
project can have different reproducibility across datasets.

III. A CASE STUDY ON REPRODUCIBILITY

The goal of this study is to determine how software defect
artifacts experience breakage through time, and how to ensure
long-term reproducibility. Our study is threefold. First, we
study the frequency at which software artifacts break. Second,
we examine breakages to identify common root causes and
fixes. Lastly, we discuss and evaluate strategies to prevent
software breakage in the context of software defect datasets.
We aim to answer the following research questions:

RQ3 How often do software breakages occur?
RQ4 What are root causes & fixes for software breakages?
RQ5 How can we prevent software breakages?
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BUGSWARM Dataset. This case study is conducted on the
dataset BUGSWARM [5, 58]. BUGSWARM is a software defect
dataset designed to continuously grow. Upon our first adoption
of BUGSWARM, the dataset included 1,941 Java artifacts
from 120 different open-source projects hosted in GitHub
that use Travis-CI, from which 146 are marked as “flaky.”
BUGSWARM provides a Docker image for each artifact, which
consists of the buggy and fixed versions of the source code,
the exact build environment in which the code was first built,
and a script to build the project and run existing tests. All
the artifacts in BUGSWARM use a build system. Among non-
flaky artifacts, there are 1,640 artifacts that use the Maven
build system, 69 that use Ant, and 86 that use Gradle.

We select BUGSWARM as the subject dataset for this
study because: (1) it is an automatically created software
defect dataset subject to software breakage, (2) its artifact
containerization facilitates investigating and fixing breakages,
(3) it provides software defects both on source code and
configuration files, (4) its scale is relatively larger than others,
and (5) it is in active development.

Experimental Setup. We study all 1,795 non-flaky Java defect
artifacts from BUGSWARM, all of which were reproducible
when the dataset was created. At regular intervals, on average
every 11.7 days over a 13-month period, we tested the
reproducibility of the software artifacts in BUGSWARM. Each
run of reproducibility test for all artifacts is referred as a test
suite. We collected the results for a total of 36 test suites.
The testing process consisted of (1) pulling the corresponding
Docker images, (2) running the build scripts for both buggy
and fixed versions, which download dependencies, build the
projects, and run tests, and (3) comparing the reproduced logs
against the reference logs, which are the Travis-CI historical
build logs. We report reproducibility results as calculated by
the criteria originally used by BUGSWARM—the status of the
build (passing, failing, or error) is compared along
with the number of passing & failing tests and the names of
failing tests (if any), for both buggy and fixed versions. An
artifact is deemed reproducible if all of these attributes match,
otherwise the artifact is broken. Recall that this is the the most
strict reproducibility criterion discussed in Section II-B.

A. RQ3: Breakage Frequency

In this section we investigate how often software breakages
occur. In particular, we first find how many of all artifacts have
ever suffered from breakage during the 13-month study, and
whether this is a one-time occurrence. Second, we investigate
the overall frequency of breakage, e.g., whether artifacts
gradually break on every test run, or there are specific points
in time in which large batches of artifacts break at once.

To understand the scale of breakage, we count the number of
artifacts with breakages across all 36 test suites. The breakage
count increments every time the status of an artifact changes
from reproducible to broken. We find that 1,124 out of 1,795
artifacts (62.6%) broke at least once during the 13-month
study. These artifacts belong to 86 out of 120 Java projects
(71.6%). This shows that breakage is not a rare occurrence
and that it affects a large majority of artifacts across different
projects. Figure 1 shows the distribution of artifacts in terms of
the number of breakages reported during the study. A total of
275 (15.3%) artifacts broke multiple times with almost half
of those breaking three or more times. Note that the number of
artifacts decreases exponentially as the number of breakages
increases. This is expected as broken artifacts remain broken
until a patch is applied to fix the breakage.

On average, 430 (24%) artifacts remained broken in each
test suite. All artifacts were reproducible when created, but as
time passed they suffered from breakages for various reasons,
which we describe later in Section III-B. Figure 2 shows
the number of newly reproducible and newly broken artifacts
identified in various test suites. A newly reproducible artifact
in a given test suite is an artifact that was broken in the
previous test suite, but that just became reproducible again
because a patch was applied to fix the breakage. A newly
broken artifact is an artifact that was reproducible in the
previous test suite, but it is now broken. For example, in test
suite #36 in Figure 2, there are 383 previously broken artifacts
that are fixed, but an additional 49 artifacts are now broken.

For the 36 test suites, the average of newly reproducible
artifacts is 38, and 32 for newly broken artifacts. This suggests
that the number of artifact breakages in the context of two
consecutive test runs is relatively small, considering a total



TABLE IV
ROOT CAUSES AND PATCHES FOR BREAKAGES

Category # Root Cause Patch # Patches Applied Percentage

1 Maven TLS Failure Update TLSv1.0 to TLSv1.2 730 24.8%
2 Unavailable PPAs Remove PPAs no longer available 679 23%
3 Unavailable Ubuntu Release Change URLs for repository 392 13.3%
4 Insecure Link Change URLs using HTTP to HTTPS 339 11.5%
5 Unavailable JDK Version Retrieve JDK version from official repository 316 10.7%
6 Unavailable Gradle Plugin Update URL of specific Gradle Plugin 158 5.4%
7 Unavailable NodeJS Installer Change URL to retrieve NodeJS installer 91 3.1%
8 Incompatible NPM Package Pin NPM package version 91 3.1%
9 Unavailable XML Update URL to retrieve DTD files 83 2.8%
10 Deprecated Checkstyle Link Replace deprecated checkstyle URL 69 2.3%
11 Unexpected Test Failures N/A - -
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of 1,795 artifacts. Nevertheless, this is problematic as it
demonstrates a need for high effort to maintain reproducibility;
there are 32 new artifacts that experience breakage every 11.7
days on average. The maximum number of newly broken
artifacts across all test suites is 379, and the maximum
number of newly reproducible artifacts across all test suites
is 383. The median for newly broken artifacts is 14, and for
newly reproducible artifacts is 16. The above demonstrates
the brittleness of artifact reproducibility and the challenge
facing the maintenance of long-term reproducibility for an
automatically created dataset.

RQ3: A total of 1,124 (62.6%) unique artifacts broke
during our 13-month study. This includes artifacts from
86 (71.6%) different Java projects. For each test suite,
32 newly broken artifacts were observed on average. The
rate at which artifacts break imposes a great challenge on
the long-term maintainability of the dataset.

B. RQ4: Breakage Root Causes and Fixes

Our 13-month study revealed a total of 1,606 individual
instances of software breakage that affected 1,124 unique
artifacts. We manually examined each breakage to identify root
causes and potential fixes. Specifically, for each instance, we
inspected the errors in the reproduced logs, and also referred to
the configuration and source files when necessary. To minimize
bias, three individuals worked independently to inspect each
breakage instance to generate a consensus on its root cause.

Our manual investigation uncovered 11 root causes of
breakage. Table IV provides a brief description of the root
causes and their patches. The patches can be categorized
into: (1) system dependency and (2) project dependency. A
system dependency patch fixes issues of dependency instal-
lation via APT. APT is a package manager for Linux that
allows users to install, update, and remove packages retrieved
from official package repositories such as Ubuntu Archive or
from unofficial Personal Package Archives (PPAs). A project
dependency patch modifies dependencies specified in build
configurations. An important requirement for patches applied
to BUGSWARM is that they do not make significant changes
to the artifact. These patches are the reason for the newly
reproducible artifacts shown in Figure 2. Note that all patches
are manually created but applied in an automated manner.
Among 1,124 artifacts that break at least once, we applied
2,948 patches on 1,055 (93.9%) of them. Note that 868 out
of 1,055 (82.3%) fixed artifacts required multiple patches.
Figure 3 shows the distribution of artifacts based on the
number of patches applied. The rest of this section discusses
each root cause and fix strategy.

a) Maven TLS Failure: This is the most common among
all root causes, affecting 730 artifacts from 68 distinct projects.
This issue is caused by the deprecation of TLSv1.0. The patch
updates TLSv1.0 to TLSv1.2 and falls into the category of
project dependency patch. This patch accounts for 24.8% of
all the applied fixes.

b) Unavailable PPAs: A total of 679 artifacts from 56
different projects were affected by unavailable PPAs. The
breakage occurs when a previously accessible resource be-
comes unavailable. These particular resources are PPAs, i.e.,
Personal Package Archives, which are used on Ubuntu to
package system dependencies. However, we found that these
dependencies were actually not necessary for the artifacts
to build successfully, and thus it is safe to remove the
installation command that was causing the breakages. More
specifically, the patch consists of removing the PPAs from the
list of repositories that are retrieved when running apt-get
update. This is considered as a system dependency patch,
which corresponds to 23% of the fixes.

c) Unavailable Ubuntu Release: Ubuntu 12.04 LTS’s
Precise Pangolin packages and releases were migrated to a



new repository, making previous URLs used by the package
managers to become stale. The patch consists of updating the
APT’s sources list to install the Ubuntu 12.04 LTS releases
via the new URL. This affected 392 artifacts from 7 distinct
projects and accounted for 13.3% of the fixes.

d) Insecure Link: Maven central repository stopped the
transfer of dependencies for HTTP protocol requests, instead
requiring HTTPS. The transfer failed with a 501 return
code resulting in unresolved dependencies. This affected 339
artifacts from 44 distinct projects. The fix was to replace URLs
HTTP with HTTPS in affected URLs, and it accounted for
11.5% of the fixes.

e) Unavailable JDK Version: This breakage occurred
when artifacts relied on a third-party server to retrieve a
specific version of the Java Development Kit (JDK), however
the server was no longer accessible. The patch simply retrieves
the missing JDK package from the official repositories. This
patch is applied to 316 artifacts. Note that while the number
of artifacts is large, they belonged to only 3 projects. Overall,
this category represents 10.7% of the fixes.

f) Unavailable Gradle Plugin, XML and NodeJS In-
staller: Unavailable Gradle Plugin is observed when plugins
originally hosted in non-central repositories are no longer
accessible. Similarly, Unavailable XML occurs when .xml
files become inaccessible due to URL changes. Finally, Un-
available NodeJS Installer also refers to a stale URL. The
installer was previously downloaded from an Amazon Simple
Storage Server (S3) Bucket instead of the official NodeJS
installer source URL. All these examples reveal the danger
of relying on third-party sources to host required resources.
All together, these accounted for 332 fixes on artifacts from 3
distinct projects, and represented 11.3% of all applied fixes.

g) Incompatible NPM Package: This is caused by an
incompatibility with the latest release of the NPM package.
Our investigation found that NPM’s semantic versioning was
set to be greater than or equal to a certain version, e.g.,
"my_dep" : ">1.0.0". As a result, a latest version was
installed instead of the original version used by the project.
The patch consists of pinning the specific package version used
when the project was originally built. This affected 91 artifacts
all from one project, accounting for 3.1% of the breakage fixes.

h) Deprecated Checkstyle Link: These breakages occur
when the link to retrieve the Checkstyle package is deprecated.
Checkstyle is a development tool to examine the adherence of
coding standards. The deprecation affected 69 artifacts from a
project that retrieves the Checkstyle package during the build
process. The patch simply updates the link of the Checkstyle
package, accounting for 2.3% of the fixes applied.

i) Unexpected Test Failures: Finally, 69 artifacts were
broken due to unexpected test failures; the number of failing
tests do not match the reference log. Our further investigation
identified four sources of test failures: expired API key for
tests, bad SSL certificate, timeout tests, and errors from the
Gradle build system, for which we do not provide patches.

Final Remarks for Root Causes and Fixes: Artifacts break
for different reasons, and often experience multiple breakages

over time. Our patches are applied to 1,055 artifacts in
2,948 fixes. Note that Maven TLS Failure, Insecure Link,
Unavailable Gradle Plugin and Deprecated Checkstyle Link
are patches that fix project dependencies, which are retrieved
by the build system and account for 44% of all fixes. The rest
(except for unexpected test failures) could be attributed to sys-
tem dependencies. We discuss next how project dependencies
represent low-hanging fruit for preventing future breakage.

RQ4: We identify 11 root causes of breakages and man-
ually crafted patches to fix ten of them. We automatically
apply 2,948 patches on 1,055 artifacts. 1,296 (44%) of
the fixes are related to project dependencies.

C. RQ5: Breakage Prevention

In this section, we discuss preventive strategies to ensure
long-term reproducibility of software defect artifacts. First,
we describe how we leverage popular build systems to cache
project dependencies. This was inspired by the insight from
our study on root causes and fixes (Section III-B): 1,296 of all
patches are applied to fix errors from dependencies retrieved
by build systems. We discuss the impact of dependency
caching on the reproducibility of 20 additional test suites over
a time period of 8 months. Finally, we discuss the need for
full isolation of artifacts to ensure long-term reproducibility.

1) Dependency Caching: To prevent BUGSWARM artifacts
from breaking due to project dependencies managed by their
build system, we add required dependencies for each artifact
to the corresponding Docker image (recall that artifacts from
BUGSWARM are instantiated as Docker containers). We refer
to this process as dependency caching, which can be auto-
mated with the help of the build systems (e.g., Maven). The
ultimate goal is to make artifacts independent from external
repositories. Artifacts whose dependencies have been cached
(also referred to as cached artifacts) run in the same way as
the original artifacts, but no longer need access to an external
central repository to download dependencies.

a) Approach for Dependency Caching: We use the local
repository configuration provided by the build system. We
describe our process for Maven, which is similar for Gradle
and Ant. We set a local repository path in Maven’s XML
configuration file. This local repository is then used to au-
tomatically save dependency files downloaded from remote
repositories when the build script invokes mvn install [7].
After downloading all dependencies, we configure the artifact
to build offline with the -o option in mvn install. This
option forces the project to build only from dependencies in
the local repository. Note that Ant supports caching but does
not have an offline mode. So we assume that the cached Ant
artifacts are cached correctly as long as their build script
does not break. We check for the existence of additional
dependencies that may require caching in Section III-C2.

b) Effectiveness of Dependency Caching: A total of
1,700 artifacts in BUGSWARM are reproducible after the
patching process described in Section III-B, and thus eligible
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Fig. 4. Reproducibility of Cached and Isolated Artifacts

for dependency caching, including 1,566 Maven artifacts, 71
Gradle artifacts, and 63 Ant artifacts. We successfully cached
all artifacts automatically. Cached artifacts are tested by run-
ning their build script using the build system’s offline mode to
restrict their network access. Since dependency caching adds
new files to the Docker container, the size of Docker images in
BUGSWARM increases. However, to our surprise, the increase
in size is rather small. For each artifact, after caching all
its required dependencies, the size increase rate is 5.1% on
average, and the 25th, 50th, 75th, and 90th percentiles of the
size increase are 2.5%, 3.5%, 5.9%, and 12.2%, respectively.

We evaluated the reproducibility of cached artifacts across
20 test suites over a period of 8 months, subsequent to our
initial study (Section III-A), and a few weeks after the caching
process concluded. The results are shown in Figure 4. While
we observe a decrease in reproducibility, the reproducibility
is mostly maintained in the 81% to 85% range with no
maintenance effort. The reason for breakage is mainly due to
dependencies that were not captured by our approach. Recall
that we cache dependencies via Java build systems like Maven,
but there are some artifacts fetching dependencies from other
sources. Unexpected tests failures are the main reason for
the variability across test suites. Some tests fail due to the
temporary unavailability of remote services. For example, tests
of apache-dubbo-416755517 invoke the RPC service,
which was unavailable during the runs of test suites #6 & #7
and restored for later test suites.

2) Artifact Isolation: Ideally, a cached artifact should be
reproducible even without internet access because all its re-
quired dependencies are available in its Docker container. If
an artifact is reproducible without access to external resources
like the internet, then it should be reproducible in perpetuity.
To verify if cached artifacts are completely reproducible, we
tested the reproducibility of cached artifacts when discon-
nected from the internet. We found that only 920 out of 1,700
(54.1%) artifacts were reproducible.

We manually inspected the remaining 780 artifacts to iden-
tify the root cause. We identified three root causes that we
were able to fix, bringing the number of successfully isolated
artifacts to 1,257 (73.9%). The most frequent issue was build

TABLE V
REPRODUCIBILITY WITHOUT INTERNET ACCESS

Description Number Ratio

Cached and reproducible artifacts 1,700 100.00%
Artifacts currently reproducible offline 1,257 73.9%

Not Reproducible – Internet Access
Cached plugin accesses the internet 157 9.2%
Internet access in unit tests 80 4.7%
Build script accesses GitHub at runtime 68 4%
Not Reproducible – Caching Issues
Incompletely cached, missing dependencies 51 3%
Irregular dependency installation 32 1.9%
Misc. runtime errors 55 3.2%

failure during the Travis initialization stage. This was observed
for artifacts that use Travis’s temporary caching functionality,
which uploads specific dependencies to the internet for later
use [9], and thus failed in isolation. This initially affected 243
artifacts that are now reproducible in isolation after disabling
Travis caching. The second reason was related to downloading
packages via NPM from the internet. Note that our caching
process only caches dependencies via build systems. Thus,
without internet access, the build script is not able to retrieve
NPM packages and thus fails. This affected 88 artifacts that
are now reproducible. The remaining 6 artifacts had port issues
that we fixed by enabling localhost within Docker containers.

A total of 443 (26.1%) cached artifacts are broken without
internet. Table V shows two main categories: (1) Internet
Access, artifacts that explicitly access the internet during the
build process, and (2) Caching Issues, artifacts that access
the internet to upload or download files in ways that are not
captured by our dependency caching techniques.

Internet Access accounts for 17.9% of cached artifacts. It
is unusual to observe software artifacts that download content
from hardcoded URLs at runtime because this practice creates
test instability. Among these artifacts, calls to the internet
were included in the tests, build scripts, or in the installation
process of cached dependencies. These are not recommended
developer practices for offline mode artifacts according to
Maven’s documentation [7]. These artifacts would be much
more difficult to reproduce in isolation, and each fix would be
artifact specific, so we leave the process of mocking specific
remote resources for future work. Caching Issues affect 8.1%
of the artifacts. This is mainly due limitations of our caching
technique. For example, 51 Ant and Gradle cached artifacts
are missing system dependencies. Unlike the artifacts that
explicitly make calls to the internet, these artifacts are likely
to be reproducible with refinements to the dependency caching
approach or manual caching of missing files.

Like cached artifacts, we evaluated reproducibility of iso-
lated artifacts with 20 test suites run over 8 months. Fig-
ure 4 shows the reproducibility of isolated artifacts along
with that the reproducibility of artifacts cached. Note that
reproducibility of isolated artifacts stays above 95%. We
inspected a few of the broken artifacts, and found that breakage
is due to a timeout. In particular, this only affects artifacts



belonging to one of two projects: rinde-RinSim and
spring-projects-spring-data-jpa. Further investi-
gation is required to determine the reasons for the timeout.

3) Final Remarks: Note that BUGSWARM as of July 2022
included all the patches from Section III-B, which were
acknowledged and pushed to BUGSWARM’s main Docker
repository. However, despite all the breakage fixes, repro-
ducibility dropped to 69% due to further breakage. On the
other hand, the official version of the dataset does not include
yet our mechanisms for breakage prevention. We applied these
mechanisms to a copy of the dataset, which allows us to
further evaluate the impact of dependency caching and artifact
isolation. We demonstrate that breakage prevention contributes
to maintaining high reproducibility after 8 months of 85.29%
and 96.82% for cached and isolated artifacts, respectively, in
comparison to 69% reported when no breakage prevention is
in place. This is remarkable as the reproducibility is on par
with that of handcrafted DEFECTS4J. Furthermore, while there
is a raising concern that limitations on size and diversity of
current defect datasets might introduce bias, the automated
process of caching dependencies and isolating artifacts enables
the continuous growth of a large-scale and diverse dataset with
long-term reproducibility.

RQ5: Dependency caching is effective in preventing
breakages. Isolation enables reproducibility even without
internet. Reproducibility of 1,257 isolated artifacts stays
above 95%, which is on par with handcrafted quality.

IV. THREATS TO VALIDITY

Our study on five Java datasets may not generalize to other
languages, or even other Java datasets. However, we believe
that our choice of language and datasets is representative; Java
is the most popular language in fault localization and auto-
mated program repair, and we consider all available datasets
that provide complete Java projects, which is a requirement to
build and run the code.

The lack of runtime environment information for some
datasets is another potential threat. In particular, BUGS.JAR
and BEARS do not specify the Java version required to
reproduce their artifacts, which increases the risk of incorrect
execution. We contacted authors of BUGS.JAR and BEARS to
request information about the runtime environment of their
dataset, but we did not receive a response. Thus, to reduce
this risk, we manually examined all artifacts in these datasets
and identified 147 out of 1,158 artifacts from BUGS.JAR and
95 out of 251 artifacts from BEARS that require Java 7 or
older. To measure the impact of this in our study, we set up
a virtual machine with deprecated Java versions and ran the
artifacts. Despite using the required deprecated Java versions,
all artifacts were still broken. The reason was the Maven TLS
Failure discussed in Section III-B. Finally, several artifacts
across datasets belong to projects from the Apache Software
Foundation, which may impose IP bans. We have ensured
breakages do not occur because of this reason.

Despite all manual efforts, there is still room for human
error when inspecting breakages. We minimize this risk by
having multiple people do manual inspections following a
uniform procedure. While the root causes of breakages are
observed in all five datasets, the fixes we provide are specific
to BUGSWARM’s breakages. It remains future work to ensure
such fixes generalize to other datasets. Additionally, although
all the fixes are applied in an automated manner, the process
of creating patches remains manual. However, the number of
broken artifacts will significantly decrease as new artifacts
are successfully cached and isolated. Finally, our dependency
caching approach heavily relies on the build systems. It
remains future work to adapt this approach beyond the build
systems used by BUGSWARM’s artifacts.

V. RELATED WORK

a) Understanding Build Failures: Prior studies have
analyzed build failures based on 26.6 million builds at
Google [49], 3412 builds from a commercial web applica-
tion [31], and 2.6 million CI builds [11], finding that com-
mon build errors range from missing dependencies and other
resources to test failures. Others have studied the feasibility
of building software, such as the top 200 Java projects from
GitHub [25], multi-language software packages [43], broken
snapshots of Java Maven projects [59], and 7200 Java projects
that use different build systems [55]. Unlike the above, we
study builds that were reproducible after their commit time
and track their reproducibility to present day. We find that the
main reason for breakage is related to dependencies, which is
touched on by [25, 31, 49, 59].

b) Fixing Broken Builds: There are techniques that
automatically fix broken builds. BuildMedic [36] fixes
dependency-related broken Maven builds by applying simple
fix strategies such as Version Update or Dependency Dele-
tion, which effectively fix 54% of the broken builds in 23
open-source projects. HireBuild [24] is a pattern-based patch
generation approach for Gradle build scripts that fixes 45% of
previously unseen broken builds. PyDFix [42] detects and then
automatically fixes unreproducible builds due to dependency
conflicts for Python projects. Vassallo et al. [60] presents
BART, which provides build fix suggestions from StackOver-
flow. Deep learning approaches have also been introduced to
fix compilation errors [40], to predict edits to fix a broken
AST [56], and to fix broken Dockerfiles [26]. Similar to us,
[24, 36, 60] use either common fix strategies or patterns that
are empirically discovered. Furthermore, the fix for a broken
build can be performed in the source files [40, 56, 60], or in
the build files [24, 36, 42]. As the artifacts in our study were
previously reproducible, the issue is likely related to build files.
While BuildMedic and HireBuild can repair Java build-related
issues, each is specific to one build system, while the builds
in our study encompass three build systems.

c) Studying Reproducibility: Different aspects of soft-
ware reproducibility have been studied over the years, which
include quality issues and reproducibility of Dockerfiles [14],
reproducibility of 30 million CPAN (Comprehensive Perl



Archive Networks) builds between 2011 and 2016 [68], repro-
ducibility of past snapshots [38], reproducibility of GITHUB
ACTIONS workflow runs [67], and reproducibility of specific
kinds of bugs such as performance bugs [23], error propagation
bugs [15], and concurrency bugs [62]. Furthermore, Frattini
et al. [16] provide a bug taxonomy from the perspective of
reproducibility with two categories: workload-dependent and
environment-dependent. 18% of bug reports from MySQL
Server are environment-dependent. Cavezza et al. [12] in-
vestigate environment-dependent failures reported for MySQL
Server, and how altering the environment affects the repro-
ducibility of those failures. There are also frameworks to
prevent breakage by preserving software and its dependencies
from source to execution [45, 57]. In this paper we investigate
the impact of software breakages over time for general soft-
ware defects, propose fix strategies for breakage and discuss
preventive measures to ensure long-term reproducibility.

VI. CONCLUSIONS

Software defect artifacts are not immune to breakages. We
conducted a study on the reproducibility of five state-of-
the-art Java software defect datasets. Empirical results show
all datasets suffer from breakages despite multiple strategies
applied to ensure reproducibility. We then present a case study
on the reproducibility of BUGSWARM, which was performed
on 36 test suites in a 13-month period. We find that 62.6%
of the artifacts break at least once during study. We man-
ually identified 11 root causes and handcrafted 10 patches
to fix breakage. We automatically applied 2,948 fixes on
1,055 artifacts to reestablish reproducibility. Furthermore, we
proposed dependency caching to effectively prevent break-
ages and isolated 1,257 artifacts that are reproducible even
without internet connection. The reproducibility of isolated
artifacts stays above 95%, which is on par with handcrafted
DEFECTS4J. Our study on reproducibility revealed open op-
portunities on the design of software defect datasets. The
full replication package of this study is publicly accessible
at https://github.com/ucd-plse/on-the-reproducibility.
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build results at face value: an empirical study of 30 million
CPAN builds. In MSR, pages 312–322. IEEE Computer Society,
2017.


	Introduction
	Reproducibility of Java Defect Datasets
	RQ1: Reproducibility Criteria & Strategies
	Defects4J
	GrowingBugs
	Bugs.jar
	BugSwarm
	Bears

	RQ2: Software Breakages in Java Defect Datasets
	Criteria for Reproducibility
	Experimental Setup
	Results


	A Case Study on Reproducibility
	RQ3: Breakage Frequency
	RQ4: Breakage Root Causes and Fixes
	RQ5: Breakage Prevention
	Dependency Caching
	Artifact Isolation
	Final Remarks


	Threats to Validity
	Related Work
	Conclusions

